
8 

8 

. 

. 

c 

The aetection of Signals in  Gaussian Noise 

W .  L. Root 

J 

N66 -87862 z 
UCCESSION NUMBER) 

(CATEGORY) 

National Aeronautics and Space Administration 
Research G r a n t  NsG-2-59 

September 19 65 

I 

4 



. 

T h e  Detection of Signals in G a u s s i a n  Noise  

W .  L.  Root 

t 
I -  

c 

National Aeronaut ics  and Space  Adminis t ra t ion 
R e s e a r c h  G r a n t  NsG- 2 - 59 

September  19 65 



. 

The Detection of Signals in Gaussian Noise* 

In this Chapter we attempt a severely limited but ra ther  careful treatment 

of what might be now called the classical theory of detection of signals in Gausian 

noise. It is assumed that the reader has  already some acquaintance with the 

statistical point of view in detection theory and even with the specific problem 

of detecting a signal in Gaussian noise (at about the level that would be attained 

f rom a reading of Chapter 14 of [I]). Thus, the first par t  of the development 

wi l l  be covered quickly, to se rve  chiefly as a review and an introduction of no- 

tation. 

F rom the point of view of mathematical statistics, problems in detection 

theory are problems of statistical inference. 

problems we choose to be concerned with here a r e  those of hypothesis testing 

and parameter estimation. 

alphabet of possible signals in a digital data-link transmission is a choice of one 

hypothesis among several; the measurement of radar  range, or of the relative 

strength of one of various paths in a multipath radio transmission, is the esti-  

mation of a parameter.  We shall arbitrari ly res t r ic t  the class of decision rules 

to certain ones based directly on likelihood ratios, with or without the introduc- 

tion of loss  functions and a pr ior i  probabilities. 

many instances be justified by the usual statistical cri teria,  e. g., a s  being 

admissible, or as  being B y e s  solutions for  given assignments of loss  and a - 

pr ior i  probability, but we shall not enter  into any discussion of these matters  

here (for  general statistical orientation see, e.  g . ,  Chap. 1 of [2] and [3]).  

m e  si'cuaiiuris icr be considered it is felt the likellhnnr! prnccldine almost can be 

justified intuitively. 

The kinds of statistical inference 

For example, the choice of one signal f rom a finite 

These decision rules can in , 

For 
I .  

One kind of mathematics encountered in these problems of statistical in- 

ference on Gaussian stochastic processes is standard Lz -space theory (Hilbert 

space theory), partly because Gaussian random variables a r e  determined by their  
':This report  will appear a s  a chapter in a forthcoming book to be edited by A .  V. 

Balakrishnan . 
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f i r s t  L,.VO moments, and partly because we require that signals have finite 

energy for  finite time periods. It is intended that the development to  follow be 

precise  and fairly complete as far as the L2 par ts  of the theory are  concerned. 

Another kind of mathematics encountered is more purely measure theoretic, in- 

volving, e.  g. , Radon-Nikodym derivatives and martingales (see [4] for  definitions 

and properties).  

aspects, and the reader  will not be hampered very much if he lacks knowledge of 

such things. 

There will be little discussion of these measure-theoretic 

The basic equation for  each type of problem to  be considered here  is 

w(t) = s(t;cr) + n(t), Ti ( t s T 2 ,  ( 1) 

where w(t) represents the received waveform, i .  e. ,  the r a w  signal into the 

receiver  or processer;  s( t;a) represents the intelligence -bearing signal; n( t) 

represents the added noise, and CY is a parameter  or index. If for  each value 

of the parameter or index CY, s(t;cr) is a known function of t, we call it a s u r e  

signal; if for  each value of CY, s(t;ct) is a stochastic process with known (or 

partially known) statistics, we call it a stochastic signal. 

only sure-signal-in-noise problems in which the added noise is Gaussian, and 

stochastic -signal-in-noise problems in which both the signal and the added 

noise a r e  Gaussian--and in fact jointly Gaussian--,with considerably more 

emphasis on the former .  

We shall consider 

Likelihood Tests  for  Sure Sienals in Noise 

In Eq. (1) s(t;a) is assumed to be a known real-valued continuous function 

of t c  [ T ~ ,  T 2 ]  for  each CY in some, as yet unspecified, parameter  set A, and 

n(t) to  be a real-valued Gaussian random process wiih cuiiiiiiuoiis au toz~rre?a-  

tion function on [ T ~ ,  Tz], and with mean value identically zero. 

assumed n(t) is separable and measurable ([4], Chap. 2).  

correlation function of n( t) by 

It is further 

We denote the auto- 

R(t, s) = En(t) n(s) . 
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The integral operator, R, on Lz [ T ~ ,  TZ 1:: which is defined by 

for  any x E L2 [ T ~ ,  T z ]  is a self-adjoint, positive-definite, Hilbert-Schmidt 

operator [ 5 ] .  

qn(t) (which can be chosen to  be real-valued) satisfying 

Thus it has real eigenvalues h 2 0 and associated eigenfunctions n 

T 2  

Associated with each X there a r e  at most a finite number of linearly independ- 

ent 9 (t); the @ (t) can be chosen to be r ea l  and to form an orthonormal set, and 

the h 

assume further that R is strictly positive definite, i. e . ,  that Rx = 0 implies 

x = 0 in L2 [ T ~  , T Z ] .  

point. 

h can be taken to be a complete orthonormal se t .  

definiteness holds, for  example, if n(t), T~ 5 t 5 T2, is a section of a stationary 

process  formed by passing white noise through a realizable, time-invariant 

f i l ter  (i.  e . ,  if it is a process of moving averages formed with a kernel which 

vanishes on a half-line). 

the following material  only superficially. 

n 

n n 

n a r e  either finite in number o r  have a l imit  point a t  zero.  We shall 

Some further comment is made in the Appendix about this 

Then the se t  of eigenfunctions $I (t)  associated with non-zero eigenvalues n 
This assumption of: s t r ic t  n 

In any event removal of this condition complicates 

One way to t rea t  a maximum-likelihood statistical inference problem 

based on Eq. 1 when s(t;cr) is a s u r e  signal is to expand the Gaussian noise 

process  on the interval [T I ,  T2 ] in  a Fourier s e r i e s  with respect to the {cn(t)) 

(the Karhunen-Lo&e expansion), which effectively diagonalizes the problem. 

Then one can easily write probability densities and likelihood ratiGs for the 

first N random coefficients in the expansion and pass to the limit. 

nique is due to Grenander [6], f o r  a heuristic account of the details in problems 
::We use the notation L2[a, b] to denote the Lz  space with respect to Lebesgue 

This tech- 

measure on the interval [a, b]. 
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such as we a r e  considering, s ee  [l], Chapter 14. We shall state results here  

in t e rms  of the Karhumen-Lo&e expansion, although there a r e  other elegant 

formulations, such as for  example the one in te rms  of reproducing-kernel 

Hilbert spaces [ 7 ] .  

Let w be the random Fourier coefficient of the received wave-form k 
with respect to  $ (t), k 

7 2  

The w 

2 .7 )  

exist with probability one for any value of a since ( s e e  [4], Theorem k 

T 2  f 2  
P P 

T 2  
P 

Also the w a r e  jointly Gaussian and independent for  each value of CY ([l], Chap. 

14). 
k 

k Let s (a) be the k'th Fourier coefficient of the signal with respect to the 

and define functions of w, which we shall call the tes t  functionals 

statist ics,  by 

f(w;ao) = 

or tes t  - 

If for  each a E A 
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(7) 

the series defining f(w;ao) converges with probability one and also in mean 

square with respect to  the (Gaussian) probability measures determined by 

each CY E A .  In fact 

wnsn(cyo 1 sn(ff)sn(ffo ) 

CY E [ A n  ]= A n 

so  that by condition (7) and the Schwartz inequality the sum of the mean values 

of the t e rms  on the right side of Eq. ( 6 )  converge, as do their  variances. 

This immediately implies convergence in mean square, and by a standard 

theorem ([4], Theorem 2.3)  implies convergence with probability one. A l s o  

and 

var  f(w;cro) = 
cy n 

It is not surprising, of course, that the variance of f(w;cyo) is not a function of 

CY, since changing CY changes only the mean value of w(t). Since the f(w;cyo) are 

mean-square convergent sums of mutually independent Gaussian variables, 

they themselves are uaua3iau n-----:--  cn- ---J s n x r  N- - v  E A, and fo r  any one of the under- 

lying Gaussian probability measures, corresponding to any CY E A .  

The significance of the test functionals f(w;cyo) lies in their  use in maxi- 

In particular, i f  the ser ies  in (7) con- mum-likelihood inference procedures. 

verges for  cy = cy0 and cy =  CY^ the logarithm of the likelihood ratio (i. e. ,  the 

Radon-Nikodym derivative of the probability measure corresponding to the 
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parameter  value (YO with respect to the measure corresponding to ( Y ~ )  exists 

and is given by 

where p(w1, . . . , w *a) is the joint Gaussian probability density for ( wlr . .  . , w ) N' N 
on the hypothesis cy, and C(cr0, cy1) depends on s(t;cra) and s(t;crl) but not on w(t) .  

Thus, maximum-likelihood hypotheses tests and parameter estimations will  

involve comparison of the values of f(w;a) for different values of CY, or maximi- 

zation of f(w;a) for CY E A. 

If we put 

f (w;(Yo) = 9 Q o E A ~  N 

and denote the likelihood ratio for the f i r s t  N observables, w1 . . . , wN, by 

P (W;(Y, (YO) , then it is an easy calculation ( see  [l], Chapter 14) to show that N 

where C (cul,ao) depends on s(t;cuo) and s(t;crl) but not on w(t). 

the f ' s  converge with probability one we have already shown; the fact that the 

right side of Eq. (i4j corivei-ges ~ i t h  prohahility one to the Radon-Nikodym 

derivative, to  give Eq. (12), involves martingale theory and will not be proved 

here, see [6]. 

we have established that the f(w;cr) a r e  limits of test  functionals yielding 

maximum-likelihood tests for any finite number of the observable w 

The fact that N 

N 

But it is worth noting that, even without the proof of Eq. (12), 

k '  

The test statist ic or test  functional f(w;cr) can be thought of, of course, 

as the output of a linear device with input w(t) = s(t;cu) + n(t). One conventional 
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way of defining the output signal-to-noise ratio of a device is as the ratio of the 

square of the mean of the output to i ts  variance; in the present case, denoting 

this signal-to-noise ratio by pz, we have from Eqs.  (10) and (11) 

Thus, the condition imposed in Eq. (7) is that the signal-to-noise ratio be 

finite for each signal s(t;cr) . The parameter p2(cy) together with a threshhold 

value, to be denoted by q, completely determine the probabilities of e r r o r  for 

testing the hypothesis, H I ,  that a signal s(t;crl) is present against the hypoth- 

esis, H,, that no signal is present, i. e . ,  s(t;cyo) E 0. In fact, in this situation, 

s (cy,) = 0, k = 1, 2, . . ., and the likelihood test  reduces to comparing k 

with a threshhold q. 

it is the only parameter appearing. 

For convenience, let us  suppress the parameter cy1,  since 

Since f(w) is a Gaussian random variable 

on either hypothesis, and since 
00 “ 2  

E,f(w) = 0 ,  Elf(w) = L< 

one has for the e r r o r  probabilities 

A 

= Prob{f(w) > T(H,) 

e, = Prob{announce HI IH, is true} 
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el -& Prob{ announce H, IH1 is t rue} 

-co 

Now, fo r  any fixed value of q, eo ,  which is the false a la rm probability, 

approaches the value 2 as @'+a, and e l ,  which is the probability of miss,  

approaches the value zero as pz+co. 
normalization (the variance of f(w) has not been normalized). 

by appropriately normalizing f(w) o r  changing the threshhold as p changes, we 

see that t es t s  can be devised such that both e r r o r  probabilities go to zero as 

pz+ 00. 

c is any constant. 

The fact that eo  -4 is an accident of 

However, either 

For example, this is accomplished if  one takes q = y( p) = cp3/', where 

The parameter p' plays exactly the same role for a detection problem in 

which the noise has an arbi t rary colored spectrum as does the signal-energy- 

to-noise-power-per-cycle ratio fo r  a detection problem in which the noise is 

white. 

can be viewed a s  an ideal limiting situation in which the Xk are all equal, and 

in fact a r e  equal to the noise power per  cycle. (To see  this, simply substitute 

No6(t) for  the autocorrelation function in Eq. ( 3 ) ,  where No is noise power per  

cycle.)  A rigorous treatment of white noise is not possible within the mathe- 

matical s t ructure  used here, but it is possible with the use of generalized 

functions (distributions) and generalized random variables, and leads to the 

szLme ~ R S W P ~ S  IC i r e  nhtiiced purely formally. 

By a heuristic argument which is rather  obvious, the white noise case 

Singularity and Non-Singularity of Tests  

The condition (7) satisfied for (Y E A not only guarantees the existence of 

the tes t  functional f(w;a), it also guarantees that the test  for the signal s(t;cu) 

against the zero signal is non-singular. For the tes t  to be non-singular 

means that, except for  a s e t  of sample functions w(t)  of probability zero 
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(on either hypothesis) one cannot tell with probability one after observing w(t) 

whether the signal s(t;cu) was present, o r  whether there  was zero signal. 

More succinc.tly, non-singularity means that the tes t  can never be accomplished 

with zero e r r o r  probability. The converse is also true, if the condition (7) is 

not satisfied, C sk(a, = + co, it is  possible in principle to tell with probability 

one after observing w(t) (except fo r  a se t  of w(t)  of probability zero on either 

hyp0thesis)whether the signal s(t;a) was o r  was not present.  

instance, one says that the two Gaussian measures  on the space of sample 

functions, corresponding to the two different hypotheses, a r e  equivalent; in 

the second instance, one says they a r e  totally singular:%. 

xk 

In the first 

We shall not prove the f i rs t  assertion, affirming non-singularity ( see  

reference in previous footnote) although there is a strong indication of it in the 

fact  that the e r r o r  probabilities, eo and e l ,  which were calculated above, are 

not zero.  

to prove, so a proof of it will  be sketched. 

prove total singularity is that one can describe two measurable se t s  A0 and A1 

of sample functions w(t) such that 

The converse statement is of some academic interest  and it is easy 

Basically, what has to be shown to 

and 

1) A0 ;lAl = 9 (the null set)  

2)  P c ( A 0 )  = 1; PI(A1) = i 

where PO and P, denote probabilities with respect to the hypotheses 

Ho(s(t, CYO) Then it will  follow immediately that 

Po(A1) = 0 and P1(Ao) = 0, since A0 is contained in the complement of A I ,  and 

vice versa .  Hence, if one takes the partition of the sample space given by A0 
and A0 (the complement of Ao) as defining the statistical tes t :  choose Ho if  the 

0) and HI ( s ( &  al)) ~ 

C 

::For mathematical definitions of equivalence and singularity of measures  
s e e  [8]. 
of functions a r e  either equivalent o r  totally singular- -the partially singular 
case  in which a se t  of observations of probability neither zero nor one yield 
a s u r e  inference while the complementary s e t  of observations does not, does 
not occur. 
cussion of this matter,  s e e  [Ill and [12]. 

It is rather  generally true that two Gaussian measures on spaces 

The theorem is due to Hajek [ 9 ]  and Feldman [lo]. FOP a dis- 
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I -  observed sample function falls in Ao, choose H1 if it falls in A l ,  one can 

make a correct  decision with probability one. In fact 

This partition need not be the only one yielding a singular tes t .  

For convenience, put s (cy1)  = s We have s (cy,,) = 0 for all k. Now se t  k k'  k 

z =  N 

L-  
n x 

N sz (z e): 
z is a Gaussian random variable under either hypothesis, and N 

N sz 
E0zN = 0, El zN = ( E  f)* 

1 
3 N sZ - -  

varoz = v a r l z  = ( E  p) 
n N N 

N s i  

n 
++m, var  z - 0 .  An ZN N = +m. Hence E E , -  By hypothesis, l im 

N+ca 

application of the Chebychev inequality will now show that for arbi t rary 

F > 0, and fo r  arbitrari ly large M > 0, P1{ zN > MI > 1 - E and 

PX ! z-- 1 < z 

under hypothesis H1, and z --c 0 in probability under hypothesis Ho . Then 

there  is a subsequence {z 

probability one ( P l )  and to zero with probability one (PO) .  

se t  of sample functions w(t) for which z N' N' 
A1 be the se t  for which z ,( w) converges to) +00. 

conditions for  the se t s  A0 and A I  required above. 

> 1 - E for sufficiently large N. That is zAT + 00 in probability 

of the sequence {z } which converges to  +m with 

I\ L. 

N 

" N 
Now let  A0 be the 

= z (w) converges to zero, and let  

These sets satisfy all the 

A l l  that has been done, 
N 

10 
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really, is to formalize the limit situation indicated by the e r r o r  probability 

calculations 

The above observations may be extended trivially to  cover the case of 

two arbi t rary mean-value functions s(t; C Y O ) ,  s(t;crl). 

ficient condition that the problem of testing between the two hypotheses co r -  

responding to these two signals is nonsingular is 

The necessary and suf- 

2 - (Sk(CY1 1 - S k ( 0 O ) )  

< a ,  (18) i ‘k 

This condition follows immediately because in principle one can consider 

w(t) - s(t;cuo), which has mean value zero o r  s(t;al) - s ( t ; c r O )  on the hypotheses 

Ho and H l ,  respectively. 

satisfied for  all pa i r s  ao, cy1 belonging to A .  

The condition (7) for  all CY E A implies that (1 8) is 

One has the feeling that a properly posed mathematical model should not 

permit the possibility of perfect signal detection in the presence of noise, 

unless there are additional constraints that rule  out this possibility in the ana- 

lysis  of any physical situation. Arguments that such constraints exist can be 

given (See, e .  g. , [ll] and [13]); it must be noted however that they are  neces- 

sa r i ly  extra-mathematical, for  within the mathematical framework, singularity 

is possible. 

finiteness of the signal energy is not sufficient to  rule  out singularity, because 

the signal energy is given by sz (a), the convergence of which says nothing 
k 

It should a l so  be noted that, except fo r  the case of white noise, 

a, 

00 sZ(a)  
about the convergence of k , since the X -, 0 .  k 

‘k 

The following theorem [15] can be used as a departure point in arguing 

against the possibility of singularity when the Gaussian noise is stationary, but 

it a l so  has other uses .  

Let n(t) be a Gaussian process satisfying all the conditions previously 

imposed, plus stationarity. W e  denote its autocorrelation function by R(t) , and 

require  in addition that 

11 



ii) the integral operators R defined by 
T T /2 

(RTx)(t) = 1 R ( t  -u)x(u)du, -T/2 t 5 T / 2 ,  

-T/2 

fo r  x(u) E Lz [-T/2, T/2] have zero null space for any T > 0 .  

By ( i ) ,  the spectrum of n(t)is  absolutely continuous and the spectral  density is 

00 

J 
-co 

Let { $n(t;T)} be a complete orthonormal se t  of ( real)  eigenfunctions of R and T 
X (T)  be the corresponding eigenvalues, i .  e . ,  n 

\ R( t  - u) 9 (u;T)dt = X (T) 9 (t;T), -T/2 d t d T/2 . n n n 
- 4 2  

Let s( t )  be a real-valued function of integrable square, -00 < t < 00, with 

Fourier  transform ( in  the sense of Plancherel theory) 

and define 

S(f) = A+oo 1.i.m. I- feizrft s( t) dt . 

-A 

T/2 

s,(T) == s ( t )  9 (t;T)dt . * S  - 1 7  n 
- llr. 

s 2  (TI 
is a non-decreasing function of T which converges 

Then, 

monotonically to 

12 



i f  this integral exists, and to  +m if it does not. 

To prove the theorem we introduce a new set of orthonormal functions. 

Let H(f) = w, H(f) 2 0 .  Then, since Q(f) is absolutely integrable, H(f) is 

of integrable square, -00 < f < 00. It has therefore an inverse Fourier  t rans-  

form 

Then, 

and 

A 
1.i.m. SH(0,-i2nft df . 
A- 00 

h(t) = 

-A 

( see  [14], Theorem 64), h(t) is an even, real-valued function. Now consider 

the functions 
TI2 

Lemma 1. The functions r\ rl (t;T), for  any fixed T, a r e  orthonormal on the 

interval (-m,oo). 

In fact, 
00 

13 
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TI2 T/2 00 

- - 1 Iqn(u;T)$ (u';T) h(t - u)h(t - u')dtdudu' s 1 
m I'xn( T b m (  T) -T/2 -T/2 -00 

by the Fubini-Tonelli theorem, because h E Lz( -00, 00)  and the 

cP,'s E Lz[-T/2, T/2] and hence E L1[-T/2, T/2]. 

of Eq. (25) reduces to 

From Eq. ( 2 3 ) ,  the right side 

TI2 
n 

Lemma 2.  Let 

tions spanned by the T (t;T), n = 1, 2, . . . 
be the closed linear manifold of square-integrable func- 

n T' 

T 
. If T'  < T, then xTl c 

2 We show that be a square-integrable function orthogonal to 
T'  

Let f 

it is orthogonal to 
T 

We have 

I q n ( t ; T ) f ( t )  dt = 0 , 

T" 
00 

n = 1, 2, . . . 
-00 

Substituting for T gives n 

00 Ti& I 1 h ( t  - u) $,(u;T) f ( t )  dudt 

-00 -TI2 

= c n ( u ; T )  fh(t  - u)f(t)  dtdu = 0, n = 1, 2, . . 
- T/2 -00 

where the change of order  of integration is justified because h and f are L2 

functions, and 9 E L1[-T/2, T/2]. The $ ' s  a r e  complete on [-T/2, T/2], hence n n 
00 

I h ( t  - u) f(t) dt = 0 

-00 

a .  e .  on [-T/2, T/2]. .- A fortiori this integral is zero for  a .  e .  t satisfying 

14 
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1 l h ( t  - u) f(t)dtdu = 0 ,  n = 1, 2, . . . 
-T'/2 -00 

Hence, interchanging intecrations a s  above, 
00 

lqn(t:?. ' )  f( t)dt  = 0 , n = 1, 2, . . . , 

which proves cg T '  T '  

Now let be the closed linear manifold in Lz( -m, 00)  spanned by 
00 

and let 

vanish where H(f) vanishes, except possibly for a set of measure zero. 

can immediately verify that +is a closed linear subspace of LL( -00, 0 0 ) .  

be the class of functions in Lz(  -00, 00) whose Fourier transforms 

One 

L e m m a 3 .  =hL. I f x E p a n d  
M 

then 

and 

~- 
x (T)  = x(t)  q (t ;-f)dt ,  n = 1, 2, . . ., n n 

-00 

00 

lim 
T-00. xn(T) 11 (t;T) - x(t)) 'd t  = 0 

I n 
-00 

-00 

where the convergence is monotone from below. 

F i r s t  we show that 2 = 9 b. / The Fourier transform Hn(f;T) of Tn(t;T) 
00 

can be written 

a .  e .  

where !4 

H(f) vanishes. Thus $ c #for all T, and hence d c N. Conversely, 

suppose g € 

and hence satisfies Eq. ( 2 7 ) .  But i f  G(f) is the Fourier  transform of g(t), 

Eq. (27)  implies that the Fourier transform of H(f)G(f) is zero, and hence 

that H(f)G(f) = 0 a .  e .  

is the Fourier t r  ;tnsform of Q . Hence H (f;T) vanishes wherever 
n n n 

T 00 

and is orthogonal to x:. Then g is orthogonal to for a l l  T T 

This implies G(f) vanishes a. e . ,  since g E p, and hence 
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g is the zero element of Lz . Thus, yc x .  00 

The family T' Now let  J be the projection operator on the subspace T 
(JT}, a s  T-. 00, is a monotone family of projection operators, which converges 

strongly to  the operator J , the projection on , i. e . ,  
00 00 

l im 
T-00 T J x = Jmx 

for every x E 

plies Eq. ( 3 0 ) .  

tone increasing. 

Then, since = H, Eq. (29) holds, and it in turn im-  

The convergence is monotone from below since the 2 a r e  mono- T 

i 

An application of Lemma 3 proves the theorem. 

and X(f) is the Fourier transform of x(t), then 

First we note that i f  

x E 
00 
n w 

Xn(T) = x(t) q (t;T)dt = ) X(f) Hn(f;T)df n 
-00 -00 

and 00 a, 

J J 
-00 -00 

Now suppose that - S(f) E L, and is defined to be zero at all values of f for 
H( f )  

which H(f) vanishes (a t  such values S(f) must necessarily vanish o r  the ratio 

does not belong to  L 2 ) .  Put x(f) = - s(f) . Then 
H( f) 

00 

H( f )  @ (f; T) df 
1 

n n 
-00 

Then Eq. (30) becomes 

16 



Converselv, if 

exists, 

with respect to each 7 (t;T) is 

one can identify in each ;e an element whose Fourier  coefficients T 
n 

The resulting sequence of elements, say {xk}, corresponding to an arbi t rary 

sequence {Tk], Tk-. 00, can be shown to converge to  an element of xOO with 

squared norm given by the right side of Eq. (31). 

that i f  the integral on the right side of Eq. (31) diverges, the limit on the left 

is +m, which completes the proof of the theorem. 

This is equivalent to saying 

The intuitive content of the theorem is that as the observation interval 

increases, the signal-to-noise ratio increases (even with a fixed signal that 

vanishes outside a finite interval) and converges to a signal-to-noise ratio 

which can be expressed in t e rms  of Fourier transforms of signal and autocor- 

relation function. This limiting form has long been known to be the signal-to- 

noise ratio for the detection problem with infinite observation interval [16]. 

The Matched Fi l ter  

Although we have one form fo r  the test functionals, given by Eq. (6),  

it is important to re-express  the f(w:a) in a form more suitable for  imple- 

mentation, particularly for analogue implementation. We now derive the 

form that permits interpretation as the matched filter, and also, for  the case 

of stationary noise, find an asymptotic expression for it related to  the result 

of the theorem in the las t  section. 
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Obviously, f(w;a) can also be wr i t t en  

where f (w;(Y), a ''truncated tes t  functional", is defined to  be the sum on the 

right side of Eq. ( 6 )  limited to  the first N terms. 
N 

Setting 

gives 

fN( w ; ~ )  = w(t) gN(t;a)dt 5' 
71 

where g (t;a) satisfies the equation N 

( 3 3 )  

g (t;a) thus defined is a function of integrable square on [ T ~ ,  T ~ ] ,  and it 

appears in Eq. ( 3 3 )  as a weighting function against which to  average W(t) t o  get 

f ( w ; ~ ) ,  the approximation to the test functional. 

N 

N 

A necessary and sufficient condition that g (t;a) converges in N 
LZ [ r l ,  721 to  a function g(t;a) in L Z  [TI, r 2 ]  is 

Furthermore,  condition (35) is necessary and sufficient that there  exist a 

square-integrable function g(t;a) satisfying 

f(w;cr) - - r  W(t)  g(t;a)dt, 

7 1  
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l -  

- 
and g(t;a) is such a g(t;a). 

definite, g = 

necessary and sufficient that the integral equation 

In the case we are considering where R is strictly 

is unique as an element of L2 [ T ~ ,  T ~ ] .  Condition ( 3  5) is also 

R(t, u) g(u;a) du = s(t;a), TI 5 t 5 TZ (37) f 
71 

have a solution g(u;cu) of integrable square (again, with R strictly definite this 

solution is unique), and any g satisfying Eq. (37) satisfies Eq. ( 3 6 )  and vice 

versa .  

quite easy to prove, were given by Grenander in his basic paper [6] ;  the condi- 

tion for a square-integrable solution to Eq. (37) is a classical theorem of 

Picard.  

These facts about the limit behavior in L2 [ T ~  , T ~ ] ,  all of which are 

Since the A n  -, 0, any s(t;a) which satisfies (35) also satisfies the con- 

dition for non-singularity ( 7 ) .  Now, putting 

= 0, otherwise 

one has f rom Eq. ( 3 6 )  

( 3 8 )  

which yields the interpretation that the test statistic f(w;a) is the output of a 

tizc-ir;ariant li-n-ear filter with impulse response g*( t) , which is turned on at  

t ime TI and read at t ime T 2 .  

matched filter for  the signal s(t;cu) with added noise n(t) . In building a device 

to detect coherently su re  signals in noise it is impossible of course to  imple- 

ment the infinite s e r i e s  of Eq. (6)  a s  such, whereas it is possible in principal 

to  implement the matched f i l ter  if  i t  exists.  

that if any l inear  filter is used as  a detection device in the role of a matched 

The f i l ter  thus described is the well-known 

It is a nearly trivial comment 
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filter, as specified in Eq. (38), it is the correct matched filter for the given 

noise and some s(t) E Lz[Tl, TZ]; and this s(t) satisfies (35) and (37). 

In case the noise is stationary there is for  large T an asymptotic form 

of the matched fi l ter  (o r  simply, an asymptotic matched filter) whose charac- 

teristics can be described entirely in t e rms  of the signal and noise spectra--  

thus obviating the necessity of solving the integral equation for g(t;a) if T is 

large enough. 

tically, one can argue from Eq. (37) that as  T + 00, the Fourier transform 

G(f) of g(t) ought to look like the ratio of the transforms of s(t) and R(t). 

is in fact true, a s  follows. We do not assume the conditions (7) and (35), 

though (7)  is implied by the hypotheses we do make. 

This statement is made precise below in a theorem, Heuris- 

This 

Let s(t;cu) be a real-valued function for  each a E A which vanishes 

identically for It 1 > To,  To a fixed positive number, and is square-integrable. 

Let n(t), -00 < t < 00, be a real-valued stationary Gaussian process with mean 

zero. Let R(t), the autocorrelation function of n(t), have the properties that 

i) f lR( t )  ldt < 03 

-00 

ii) the integral operator, R, with kernel R(t - u), on 

T T  
2 Lz[ - 2, -3 has zero null space for any T > 0 .  

Suppose further that 
00 

-00 - 
and le t  g(t;cu) be the inverse Fourier transform of J L e  sense of the w f )  
Plancherel theorem. Then for  sufficiently large T the linear functional 

T I2  

- TI2 
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. 
has a (Gaussian) distribution which is  arbi t rar i ly  close, in the sense of the 

Levy metric, to the distribution of f (w;a) for any actual signal s(t;cro). 

we have indicated explicitly the dependence of the test  functional f on the ob- 

servation interval length. Further, if a l ,  . . . , aN all belong to A, for  suffi- 

ciently large T the test  functionals fT(w;a.), i = 1, . . . , N, have a joint Gaus- 

sian distribution which is arbitrarily close to that of f (w;a.), i=  1, . . ., N, for T i  - 
any actual signal s(t;ai), i = 1, . . . , N, if the latter joint distribution is non- 

singular. 

Here 
T 

N 

1 

The first assertion is a special case of the second. The functionals 
N 

f (w;a) a r e  jointly Gaussian as a re  the functionals f ( w ; ~ ) ,  so it is sufficient 

to show ( in  the presence of the non-singularity hypothesis) that the means, 

variances and covariances of the f (w;a.)  approach those of the f (w;ai). 

T T 

N 

T i  T 
We note again that i) implies that the spectrum of the noise process is 

absolutely continuous and that the spectral density Q( f )  is the Fourier  t ransform 

of R. Also, f rom iii) 

00 00 

-00 -00 

In the remainder of the proof w e  again indicate the dependence of the 

eigenvalues and Fourier coefficients on T by writing X (T),  sn( T;a), w (T)  . 
By the theorem in the preceding section i) and ii) plus the conditions on s(t;cr) 

guarantee that 

n n 
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This theorem is trivially generalized to give 

and the corresponding decomposition for sn( T;a) 

df 

s (T;ao), and observing that n 
the individual te rms  thus formed satisfy the stated theorem. 

from Eqs. (10) and (11) that 

We then have 

-00 

and 00 

-00 

T T  
2 2  

N 

Since the restriction of g(t;a) belongs to L2 [ - -, -3 it belongs to 
T T  

L1 [- y, 
guarantees the existence of f ( w;ao) with probability one, and justifies averag- 

ing inside the integral. 

and this fact plus the fact that E In(t) I is a finite constant 
CY 

N 

T 
One has 

TI2 
N 

E f (W;QO) = r Ew(t) 2t;aO) dt 
l2T U 

-00 
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for  T > 2To. Also, 

T/2 
h. - 

covar f T (w;cyo) f T (w;cyl) = 1 I R ( t  - u) 2t;cyo) su;cyl) dt du 

- TI2 

where 

= 0 otherwise 

We let < * > denote inner product and 11 - 11 denote norm on L2( -00, m),  and de- 

> , where we have dropped note convolution, so  that v a r  f (w;a) = <R:kz T 
the cy. Since 11 g - g 11 -, 0, and the L1 norm of R, IIR 11 , is finite we have 

'u 
- 

T '  g~ 

T 

a s  T --t 00. 

Here we have used the fact that 

-m 

m 

by the integrability conditions on R(t) and z(t; cyo) . 
f (w;cyo), both of which a r e  Gaussian for  all  T > 0, have means and variances 

which converge to respectively the same finite limits a s  T - 00. 

modification of the above argument shows that covar f (w;cyo) f (w;cyl) and 

Thus f (w;cyo) and T 
'v 

T 
A trivial - h. 

T T 
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covar f (w;cro) f (w;cul) converge to the same finite l imits also. T T 

Remark If in addition to the hypothesis iii), the function - S(f;cu) is an integral 

function of exponential type with index 5 TT T1, then for T 2 TI ,  the integral 

equation (37)  has a solution in Lz[- x, $1 by a well-known theorem of Paley 

and Wiener. This condition, which is satisfied, for example, if in addition to  

iii) and the vanishing of s outside [-T, T ]  is the reciprocal of a polynomial, is 

stronger than necessary.  In general as far as we know one cannot infer f rom 

the hypothesis of this theorem that Eq. (37) does have a solution, that is, that 

there is properly speaking a matched filter. 

f i l ter  in the Lz sense is of course irrelevant in both the statement and proof 

of the above theorem. 

gf)  

2 

The existence of the matched 

Stability 

It is worth finding out whether the performance of a detector is critically 

dependent upon the noise statistics and signal waveforms being exactly what 

they a r e  assumed to  be. Even though a detector is optimum for  a certain sig- 

nal waveform in Gaussian noise with a certain autocorrelation function, if the 

e r r o r  probabilities r i s e  sharply with slight changes in signal waveform or 

noise structure, the detector wi l l  not be in practice very good, because the 

actual signal and the actual noise a re  unlikely to be exactly what was assumed, 

We shall refer  to the property of a detector to  maintain its performance under 

shifting conditions a s  its stability:: 

likelihood detectors using the test  functionals f(w;cu). To do this properly we 

should allow for more o r  less arbitrary perturbations in the signal and in the 

noise statistics, but it is difficult to account quantitatively for changes in Yne 

distribution of the noise statistics from the Gaussian, so  we res t r ic t  ourselves 

to  perturbations in the noise statistics which a r e  reflected only by changes in 

the autocorrelation function, while the noise process remains Gaussian (see 

We now investigate a little the stability of 

::In the statistical literature, what we a r e  here calling stability is called the 
robustness of a statistical decision procedure. 
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m i ) .  
Suppose f i rs t  that the condition (35) is satisfied, that the noise auto- 

correlation function is accurately known, but that there a r e  changes in the 

signal waveform. It is easy to see  that small  changes in the signal s(t;a) in 

the mean square sense a r e  reflected as small  changes in the mean of the d i s -  

tribution of f(w;a), which distribution is otherwise unchanged. In fact, let 

s(t;a), a E A, be the family of nominal signals, with Fourier  coefficients s (a) 

with respect to the $J ( t ) .  

cients s '  (a). 

k 
Let the actual signals be s'(t;a) with Fourier coeffi- k 

Then the received waveform is k 

w'(t)  = s'(t;a) + n(t) (40) 

f(w';ao) = ( 41) 
1 + "k) 

'k 

and 

f(w';ao) is gaussian for any LY E A; its variance, a s  before, is , but 

its mean is 

E f(w';ao) = (42) CY 

Then the difference between the nominal mean value of f(w;ao) and its actual 

mean is given by 

by the Schwarz inequality. The inequality ( 4 3 )  may also be written in t e rms  

of the weighting function g(t;cu), since the condition for the existence of a 

matched f i l ter  is satisfied, as 

IE f(W';ao) - E f(w;ao)( 5 IIg(ao)II * I IS'(a) - S(.)II 
LY CY 

where 11 11 denotes the Lz norm on [TI, 7 2  1. 

( 44) 
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. 
r 

Thus, if / l s ' (a)  - s ( a )  11 is small, the mean of the distribution of f(w;auo) 

is  shifted only slightly, and small  changes in the e r r o r  probabilities result .  

For the case of simple detection, where the Ho hypothesis is the no-signal 

hypothesis and the Ill hypothesis is that the signal is s(t;ru), the e r r o r  proba- 

bility eo defined in Eq. (16) is unchanged, and the e r r o r  probability e l  defined 

in Eq. (17) is increased by the amount 

'1 - p + -( 1 Eaf( w;a) - Eaf( w ' ; ~ )  ) 
P P 

1 2  
du 

= G=- (45) 

a s  is readily verified. Ae,  may be negative, of course.  

It is  interesting to note that i f  the condition ( 3 5 )  is not satisfied the de- 

tector is completely unstable, in the sense that an arbi t rar i ly  small  change in 

s(t;a) in the mean-square sense can (not necessarily will) result  in an arbi-  

t ra r i ly  large change in the mean value of f(w;a) . To see  this we note f i rs t  a 

theorem of Landau ([18] p. 1) to the effect that if { p a  is a given sequence of 

rea l  numbers such that C p z  = +GO, then there exists a sequence of real  num- 

bers  {q,} such that C qz < +a, but C p q diverges. To apply this here, sup- 

pose 2 
large.  

- 

k 

k k k  
Si(@) 

= +m, choose E > 0 arbi t rar i ly  small  and B > 0 arbitrari ly 

By the Landau theorem there is a sequence (q such that k 

and 
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I -  

1 -  

Then put 

S' =sk(cr) + q k ,  k = l ,  ..., N k 

= sk(a), k = N + 1, N + 2, . . . 

where N is chosen large enough that 

N m 

Note that the condition for  non-singularity need not be viblated by either the 

can con- nominal signal s(t;cr) or the actual signal s'(t;cr). - 

diverges, because A + 0. Also, verge even though - 

* s i  (@) 
In fact 

m 'k(lY) 2 Xk 

k Ai 

will certainly converge if the f i rs t  term on the right converges, that is if 

s(t;cr) satisfies the non-singularity condition. * 

Now let us require again that (35) be satisfied and let us suppose that 

the signal is exactly as specified, but the noise, though Gaussian with meal 

zero, has autocorrelation function 

41 am indebted to  Professor  T. Kailath for pointing out t o  me that the stability 
discussion does not make much sense unless both the nominal and actual sig- 
nals (o r  statistics) are required to satisfy the non-singularity condition. 
This point is overlooked in [li'], where there  is some ambiguity in the dis- 
cussion of the unstable case fo r  Gaussian noise. 
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R'( t, U) = R( t, u) + A( t, 'u) (46) 

I 

where R(t, u) is the nominal autocorrelation function, as used in defining 

f(w;cu). 

hence the 
It is reasonable to require that R'(t, u) as well as R(t, u) be bounded, 

L2 [TI, ~ 2 1  X [TI, TZ] norm of A, to  be denoted by [ A  1, is neces- 

sa r i ly  finite, 
7 2  T 2  

In general we let primed quantities re fer  to actual statistics, unprimed 

quantities refer to nominal statistics. The test functionals 

k 

k 
f(w;cu) = 

are unchanged; Xk, qk( t )  and the Fourier coefficients refer to  the nominal 

autocorrelation R(t, s). F o r  convenience we again consider the case of simple 

detection; the hypothesis Ho is the no-signal hypothesis, the hypothesis Hi is 

that a signal s(t) is present (we drop the unneeded parameter  (Y). Then, 

putting 
s w  

f(w) =I , 
'k 

E; f(w) = Eof(w) = 0 - 

Elf(w) = E,f(w) = 
K 

Now, however, letting n k = fn(t1 $(t) dt, 

(47) 
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I -  where ( -  , .) is the inner product for Lz [ T ~ ,  T ~ ]  and A is the integral operator 

with kernel A(t, u). Thus, 

s s E n n  
- - k j  k j  

Put 

Then 

or 

(48) 

(49) 

Thus the distribution of f(w) is unchanged except for  its variance, under either 

hypothesis, and the change in the variance is bounded by the right side of (50).  

Actually, a sharper  estimate is possible, for n A u  may be replaced by the 

operator norm of A, as is easily seen. 
2 

= +oo, complete instabillty may exist, Sk z q  Again we can show that if 

this t ime in the sense that an arbitrari ly small  change in R(t, u) in the mean- 

square sense can result  in an arbitrari ly large change in the variance of f(w). 

Let c > 0 be chosen arbi t rar i ly  small and B > 0 be chosen arbi t rar i ly  large. 

Suppose a sequence of real numbers {c } is chosen so that 
I 

k 

29 



and 

‘kSk -1 > By and define an operator A by 
‘k 

Choose N such that I 

(A$ ,@.)  = c  c , k , j  =1, ..., N 
k J k j  

= O ,  k o ; - j = N + 1 ,  N + 2 ,  ... 
Then 

SO A is a Hilbert-Schmidt operator (see [19]). It is symmetric, since for 

L z [ T i y  T 2 1  

where the x 

is a l so  positive definite, as is shown by putting y = x in Eq. (51), 

and y k k a r e  Fourier  coefficients of x and y with respect to  $ k’ 

whence 

A 

(Ax, x) = (Exkck(’ L 0. 

Thus A is a symmetric, positive definite integral operator on L z [ T ~ ,  T Z ]  with 

kernel 
N 

A(t,  u) = c c .  $ (t) @.(u) . 
k, j k J k  3 

A(t, u) is furthermore continuouss since the @ (t) are  continuous. We have then 
k 
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that 

R'(t, u) = R(t, u) + A(t,  u) 
, 

is a continuous autocorrelation function such that 

[Rl - RU 5 E 

The spectral  decomposition of the operator R' is different f rom that of R, 

but - onlyin the first N eigenvalues and eigenfunctions. Hence, if 

then the corresponding series based on the eigenvalues and eigenfunctions 

of R' is also finite, because the tails of the two series are the same. Thus 

it is possible in principle to  have an unstable detector even though the con- 

dition for non-singularity is satisfied both for  the nominal and actual noise 

autocorrelation. 

It must be admitted that the exact condition ( 3 5 )  separating stable 

and unstable operation is in a sense artificial, because it depends on the 

choice of mean-square difference as a measure of the perturbations of 

signal and noise autocorrelation (see [17]). 

s a m e  condition as that permitting the integral form fo r  the test  functional 

{tkc z~aick.,ed filter). The fsct t k z  the two ronditions agree is curious and 

inter e -  1 ; ' i deperds on treating :he whole problem consistently in the 

context of Lz spaces.  

It is, of course, exactly the 

The M -symbol Likelihood Detector 

The mdt ip le  hypothesis test  problem of choosing one of M possible 

signals in Gaussian noise is rather special f rom a statistical point of view, 
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but surprisingly general f rom a communications and measurement theory 

point of view. 

s(t;Q) on Q is usually continuous when cy is a continuous sca la r  or vector para-  

meter, and it is often not only permissible but desirable to make a discrete 

approximation to it, that is to quantize the parameters .  

is the measurement of doppler shift by a radar  by using a parallel bank of 

band-pass filters. 

This is because in practical problems the dependence of 

A familiar example 

So let  us now consider this multiple hypothesis test problem from the 

point of view already advanced. To s ta r t  with, consider a tes t  based only on 

the Gbservables w g ,  . . . , wN. We have Q = 1, 2, . . . , M with each s(t;cy) a known 

signal, and let us adjoin cy = 0 a s  the zero-signal hypothesis. 

probabilities are assigned so  that (Y = k has probability T T ~  k = 1, . . . , M. 

likelihood test to  determine cy is as follows: 

cy = 1, . . ., M and choose that hypothesis CY = k for which the resulting value is 

largest .  

making a correct decision (among tests using only wl,  . . . , w,), as may be 

readily verified. 

largest  f rom among TT p(w1, . . . , wN;cy), CY = 1, . . ., M, one chooses the largest  

f rom among 

Suppose a priori  -- 
A 

compute TT p(w1, . . . ,w,;Q) for 
Q 

This test  has the property that it yields the maximum probability of 

Now the test  is not changed if, instead of choosing the 

cy 

+ log TTcy. 

p(wl J * * . > W ~ ; f f )  

P(Wl> . . . , WN;O) 
1% r c y  

It is still t rue in the limit a s  N + 00 that this test  yields the maximum proba- 

bility of making a correct  decision if condition (7)  is satisfied [20]. 

The detector prescribed by this test  consists then of I V I  devices in 

is a pre-  parallel which compute f(w;cy) - c 
(Y' cy 

determined constant, and a comparator to choose the largest  ( in the ari th- 

metic sense, not in  absolute value). Let us assume 

cy = 1, . . . , M, where each c 

< G O  , cy =1, ..., M, 

3 2  



which implies the condition (7 ) .  

and can consist essentially of a bank of M matched fi l ters.  

tionary, the asymptotic forms for the matched fi l ters a r e  applicable. 

outputs a r e  jointly Gaussian, s o  e r r o r  probabilities may be calculated directly. 

For example, the conditional probability of making a correct  decision given 

that the t rue  value of CY is 1 is 

The detector is then non-singular and stable, 

If the noise is sta- 

The M 

k' = f(w;l) - f(w;k) - ~1 + c Put 
k 

= fs(t;l) g(t;l) dt 

TI 

- f r ( t ;k )  g(t;l) dt - 

7 1  T1 

+ fs( t ;k)  g(t;j) dt . 
T1 

The probability of a correct decision is 
r .  - r s  

~ 1 - 1 5 2  > 0, 6 3  > U, . . ., i 0) = r 1 1 S 2  -n i t  > - 1 i i 2 ,  ...) gM-mM: M 

M 

2 1 J 1 J  
f . . .fexp[- y. .x.x.] dx2 - .&M 1 

M -1 
- - 

( 54) 

where the matrix r = [y. .] is the inverse to  the covariance matrix [cT~.] and 

lc21 is the determinant of the covariance matrix. 
1J 13 
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s; (CY) 
If one has all the - equal, as is often approximately true, and 

hk 
the ‘IT all equal, then an optimum test results with the c all equal, and they 

may be cancelled out. The detector then has the property of being optimum 

for  arbi t rary signal-to-noise ratio, which otherwise would have to  enter as a 

parameter,  either with o r  without an a -- prior i  distribution (see [l], Chap. 14). 

CY CY 

- Stochastic Signals 

W e  suppose now that the signal t e r m  in Eq. (1) is random and Gaussian. 

In particular let 

w(t) = s(t;a) + n(t), CY = 1, 2, . . ., M; TI 5 t 5 TZ ( 56) 

w h e r e  s(t ) is fo r  each CY ( i .  e., each possible signal) a sample function f rom a 

real -valued Gaussian process,  each with continuous autocorrelation function, 

and each independent of n(t) . Let 

( 5 7 )  
A a(t;a) == E s(t;cr) 

CY 

(58)  
A and 

z(t;cu) -a(t;a) - s(t;a), (Y = 1, 2, . . ., NI . 

That is, a(t;CY) is the sure-signal component of the total received signal, and 

z ( t ;a)  is the purely random par t .  

4 t; 4 by 

Denote the correlation functions of the 

A 
T(a)(t, u) == E z(t;a) Z(U;CY) (59) 

ff 

and of the noise by 

(60) 
A 

P,(t, u) = EE!~) n[ii) 

To s t a r t  with, consider a finite set  of observation times, {t }, k 
t i  5 t p  < tt <- - < t  

n, z 

respectively; e .  g., 

5. T2 ,  f rom the  observation interval [T I ,  T ~ ]  and let 
k 

(a) (CY) 
, a , w be the column vectors with entries n(t ), z(t .CY), y(tk;a), w(tk) k k’ 
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. 
The covariance matrices of the various random vectors, all of which we assume 

to be non-singular, a r e  denoted by the same le t ter  as the corresponding cor re-  

lation function, e .  g., 

T where we use the notation A 

bility density function for the observed vector w on the hypothesis CY is the 

K-variate Gaussian density function 

for the transpose of the matrix A .  Then the proba- 

exp [-  + ( w  - a (cy))T . +R)-l(w - a'"))] (61) 
P ( W l 4  = K 

where the symbol IA 1 has been used  to denote the determinant of the matrix A .  

A likelihood test  for determining which signal cy, CY = 1, . . . , M, was sent is then 

to compare the values taken on by p(w I CY) fop the waveform actually received, 

and choose that CY which gives the largest value. 

pre-assigned weightings if desired; this amounts of course to comparing the 

a - posteriori  probabilities of the transmitted signals indexed by CY given w, where 

?he weightings a r e  proportional to the -- a prior i  probabilities of these symbols. 

In any event for the usual decision procedures, the essential par t  of the data 

processing is to  determine the p( w ICY), or  quantities related to them which have 

the same ordering as the p(w1cy) for each w. 

ri thms of the p(w Icy); then the determinants enter only as  additive constants and 

rhe active partof the data processer consists of M channels, each of which com- 

putes one of the M quadl-atic forms, 

The p(w Icy) may each be given 

It is convenient to take the loga- 
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In a sense, then, the problem of constructing a good receiver is solved 

in this simple fashion. 

fine net of sample points tn yields an approximation to  the 

sense that it p a r a n t e e s  the ratio of any two of the p(w ICY) will be arbi t rar i ly  

close, with probability one, to  the Radon-Nikodym derivative of the correspond- 

ing probability measures .  The situation is not entirely satisfactory, however, 

because the limit theory is complicated. 

problem as was done for  s u r e  signals in Gaussian noise. We shall only make 

reference to  some of the l i terature  ([7], [SI, [IO], [u], [u], [zl], [22], [23], [24], [25], 

[26], [27]) and not discuss the l imit  theory here  for  the general case. 

Indeed, in case the problem is non-singular a sufficiently 
I I  best" answer in the 

It is difficult t o  "diagonalize" the 

There is one very useful idealized special case in which most of the 

mathematical difficulties do not appear, however; it is the problem of detecting 

a stochastic signal in white noise. H e r e  one can represent the stochastic signal 

by its Karhunen-Loeve expansion and, formally at least, a lso represent the noise 

as a random Fourier  expansion with uncorrelated coefficients in t e rms  of the 

same orthogonal functions. 

is an approximation. This situation is, in fact, a formal particular case of that 

in which the covariance functions of the signal and noise determine integral 

operators as in Eq. ( 3 )  which commute. 

chastic signals in noise under this special assumption of commutativity. 

Eq. (56) let CY = 0 o r  1, and let s(t;o) be identically zero and s(t;l) be a Gaussian 

process  with mean zero and continuous autocorrelation function 

If the noise is not white over the infinite band this 

We now look at the detection of sto- 

In 

I'(t,, u) = Es(t;l) s(u;l) . (63) 

Let n(t) be Gaussian noise with mean zero and continuous autocorrelation func- 

tion 
R(t, u) = En(t) n(t) . 

We suppose, in accordance with the above assumption, that the operators R and 

I? defined as in Eq. (3)  with the autocorrelation functions as kernels satisfy 

RT = I'R, and that each is strictly definite. 

normal  set { qk} which is a set of eigenfunctions for each operator and 

Then there  is a complete ortho- 
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A s  before, take T 2  

w = w(t) $,(t) dt . k 

- . a  WN, for  the Then the log likelihood ratio, formed using the statistics wl ,  
hypothesis 1 1  signal plus noise present" against the hypothesis 1 1  noise alone'' is 

Now the condition 

is necessary and sufficient that the detection problem be non-singular ( s ee  [ll] ) >  

in the same sense as  the t e r m  w a s  used in the preceding section; and if (65) is 

satisfied the expression for the log likelihood ratio given by Eq. (64) converges 

with probability one on either hypothesis a s  N -. 0 0 .  We shall, however, assume 

satisfied the more stringent condition, 

;;..hick; has been called hy Hajek t h e  condition for strong equivalence of the 

signal-plus-noise and noise probability measures [27]. If (66) holds one can 

write for the limit log likelihood ratio 
.# 

I 

I 
I 

~ 

I 

I 
i 

i 
I 

i 

The first ser ies  in Eq. (67) converges, and the second ser ies  converges both in 
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mean-square and with probability one on either hypothesis, as will follow f rom 

comments immediately below. Since the first series does not depend on w, the 

statistical inference is determined entirely by the second series. 

define a test functional, o r  test statistic 

We can thus 

m 

k 2 
q(w) = c %(Xk + s) k 

A A 

fo r  use in maximum-likelihood procedures. Since the random variables w are k 
mutually independent under either hypothesis, the w2 are also.  

variances of q(t) are readily calculated to  be: 

The means and k 

varIq( w) = 2 f $  
A l l  four infinite series converge if condition (66) is satisfied. 

A maximum-likelihood tes t  to determine whether signal is present in the 

received waveform o r  not consists in comparing q( w) with a predetermined 

threshhold and answering in the affirmative if q(w) exceeds the threshhold. 

p7obabilities of detection and false detection (false alarm) are governed then by 

the probability distribution of q(w) and the value of the threshhold. The de ter -  

mination of the distribution of q(w) is eomplicated and in general the answer does 

not come in very mat form.  The prob- 

l em is a classical  one since the distribution of a quadratic form in Gaussian 

var ia tes  has been of interest  for a long time for various reasons ([28], [29], [30]). 

The 

We shall not attempt to discuss it here .  
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Under certain conditions the quadratic functional q(w) can be written as 

an integral 
T 2  T2 
n n  

In fact, formally, if one puts 

then the right s ide  of Eq. (70) reduces to the se r i e s  in Eq. (68), and Q satisfies 

the integral equation 

as may be verified immediately. 

solution Q(t, s) in the space of functions of integrable square on 

The integral equation actually does have the 

It follows fairly easily that the convergence of the se r i e s  in (73) implies strong 

equivalence, i. e . ,  the condition (66) .  The converse is not t rue.  

It is interesting to note that the conditions (65) and (73) play correspond- 

ing roles respectively for this stochastic-signal-in-noise case as (7) and (35) do 

fcb: the sure-signal-in-noise case.  Condition (66), s t rong equivalence, also 

implies a kind of stability of the  functional g(f) with respect to the underlying 

probability measures in the commutative Zase being discussed [17]::. 

The relationships just  stated precisely can be formally extended to cover 

the case of white noise; this gives the usual so-called optimum detector for 

::The reference cited does not discuss the special commutative case explicitly. 
The condition given there  redvlces to ( ) in this case. 
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l -  

detecting Gaussian signals in white Gaussian noise. One has, 

so that 00 

The f i r s t  and second moments of q(w) a r e  

varlq(w) = 
NO 

(75) 

7. 
al l  of which converge since 

must converge. 

mean-square and with probability one on either hypothesis, so  the test  functional 

q(w) is meaningful. 

reduces to 

It follows that the ser ies  in Eq. (74) for  q(w) converges in 

Furthermore, the integral equation for Q(t, s), Eq. (72) ,  

No fr(t, t ' )  a t ' >  s )  dt '  = r ( t ,  s) - Nz a t ,  s) 
0 

T I  

which has the solution 

q(w) is again given by the integral quadratic form of Eq. (71). 
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lem to diagonal form. In the general case, a "diagonal form" can be found, but 
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. 

A P P E N  DIX 

Throughout we have made the assumption that the operator R on L2[a, b], 

a and b finite, defined by 
b 

[Rx](t) = I R ( t ,  u) x(u) du , a 5 t 5 b 
a 

where R(t, u) is an autocorrelation function, is s t r ic t ly  positive definite, i. e. , 

fo r  any non-zero x E Lz[a, b] . 
operator, (A2) implies that it has a complete orthonormal set of eigenfunctions 

whose corresponding eigenvalues are real and s t r ic t ly  positive. 

Since R is a completely continuous, self-adjoint 

In some places this assumption is merely a convenience, however fo r  the 

asymptotic resul ts  for stationary noise and long observation times it is essential. 

We shall  therefore prove a sufficient condition that seems adequate to take care 

of most cases. 

Let R(t), - 0 0  < t < m , b e  a continuous autocorrelation function (i.  e. , a con- 

tinuous, hermitian symmetric, non-negative definite function). Let x( t) be of 

integrable square on [a, b] and 

b 
n 

a 

Extend x(t) fo r  all t, - 0 0  < t < 00, by taking it to be indentically zero outside 

[a, b]. Then b b  
- 

(Rx,  x) = l I R ( t  - U) x(u) x(t) dudt 
a a  

- 
= f $ R ( t  - u) x(u)x(t)dudt 
J J  

-00 -M 
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By Bochner's theorem, 

0 0 0 0 0 0  

dG(f) x(u) X(du dt 
i z  nf( t -u) 

-00 -00 -a3 

4 where G(f) is a bounded monotone non-decreasing function. Since x(t) is zero 

outside a finite interval, the integral in (A3) is absolutely convergent, so  we may 

write 
W 00 00 

- i z  rrfu x(u) du r C izrft 
(Rx,x) = dG(f) e x( t )dt  e 

J J 
-00 -00 

00 
yr 

-00 

J 
-00 

where X(f) is the Fourier transform of x(t) . 
identically zero, and cannot vanish on any set of points converging to a finite 

l imit .  

(Rx, x) > 0 by ( A 4 ) .  

that G have any continuous part  at all. 

non-zero density function. 

The function X(f) is analytic, not 

Hence i f  the points of increase of G(f) contain a convergent set, 

This is a very weak condition; for  example, it is sufficient 

A fortiori it is sufficient that G have a 
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